Question
Simplify the expression
a2−a4
Evaluate
a×1×a−a3×a
Multiply the terms
More Steps

Multiply the terms
a×1×a
Rewrite the expression
a×a
Multiply the terms
a2
a2−a3×a
Solution
More Steps

Evaluate
a3×a
Use the product rule an×am=an+m to simplify the expression
a3+1
Add the numbers
a4
a2−a4
Show Solution

Factor the expression
a2(1−a)(1+a)
Evaluate
a×1×a−a3×a
Evaluate
More Steps

Evaluate
a×1×a
Rewrite the expression
a×a
Multiply the terms
a2
a2−a3×a
Evaluate
More Steps

Evaluate
a3×a
Use the product rule an×am=an+m to simplify the expression
a3+1
Add the numbers
a4
a2−a4
Factor out a2 from the expression
a2(1−a2)
Solution
More Steps

Evaluate
1−a2
Rewrite the expression in exponential form
12−a2
Use a2−b2=(a−b)(a+b) to factor the expression
(1−a)(1+a)
a2(1−a)(1+a)
Show Solution

Find the roots
a1=−1,a2=0,a3=1
Evaluate
a×1×a−a3×a
To find the roots of the expression,set the expression equal to 0
a×1×a−a3×a=0
Multiply the terms
More Steps

Multiply the terms
a×1×a
Rewrite the expression
a×a
Multiply the terms
a2
a2−a3×a=0
Multiply the terms
More Steps

Evaluate
a3×a
Use the product rule an×am=an+m to simplify the expression
a3+1
Add the numbers
a4
a2−a4=0
Factor the expression
a2(1−a2)=0
Separate the equation into 2 possible cases
a2=01−a2=0
The only way a power can be 0 is when the base equals 0
a=01−a2=0
Solve the equation
More Steps

Evaluate
1−a2=0
Move the constant to the right-hand side and change its sign
−a2=0−1
Removing 0 doesn't change the value,so remove it from the expression
−a2=−1
Change the signs on both sides of the equation
a2=1
Take the root of both sides of the equation and remember to use both positive and negative roots
a=±1
Simplify the expression
a=±1
Separate the equation into 2 possible cases
a=1a=−1
a=0a=1a=−1
Solution
a1=−1,a2=0,a3=1
Show Solution
