Question
Simplify the expression
ibwu2j−ibwu2l2−bwu2lj+bwu2l3−ibwl2j+ibwl4+bwl3j−bwl5
Evaluate
bw((u2−l2×1)(i−l×1)(j−l2))
Remove the parentheses
bw(u2−l2×1)(i−l×1)(j−l2)
Any expression multiplied by 1 remains the same
bw(u2−l2)(i−l×1)(j−l2)
Any expression multiplied by 1 remains the same
bw(u2−l2)(i−l)(j−l2)
Multiply the terms
(bwu2−bwl2)(i−l)(j−l2)
Multiply the terms
More Steps

Evaluate
(bwu2−bwl2)(i−l)
Apply the distributive property
bwu2i−bwu2l−bwl2i−(−bwl2×l)
Use the commutative property to reorder the terms
ibwu2−bwu2l−bwl2i−(−bwl2×l)
Use the commutative property to reorder the terms
ibwu2−bwu2l−ibwl2−(−bwl2×l)
Multiply the terms
More Steps

Evaluate
l2×l
Use the product rule an×am=an+m to simplify the expression
l2+1
Add the numbers
l3
ibwu2−bwu2l−ibwl2−(−bwl3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
ibwu2−bwu2l−ibwl2+bwl3
(ibwu2−bwu2l−ibwl2+bwl3)(j−l2)
Apply the distributive property
ibwu2j−ibwu2l2−bwu2lj−(−bwu2l×l2)−ibwl2j−(−ibwl2×l2)+bwl3j−bwl3×l2
Multiply the terms
More Steps

Evaluate
l×l2
Use the product rule an×am=an+m to simplify the expression
l1+2
Add the numbers
l3
ibwu2j−ibwu2l2−bwu2lj−(−bwu2l3)−ibwl2j−(−ibwl2×l2)+bwl3j−bwl3×l2
Multiply the terms
More Steps

Evaluate
l2×l2
Use the product rule an×am=an+m to simplify the expression
l2+2
Add the numbers
l4
ibwu2j−ibwu2l2−bwu2lj−(−bwu2l3)−ibwl2j−(−ibwl4)+bwl3j−bwl3×l2
Multiply the terms
More Steps

Evaluate
l3×l2
Use the product rule an×am=an+m to simplify the expression
l3+2
Add the numbers
l5
ibwu2j−ibwu2l2−bwu2lj−(−bwu2l3)−ibwl2j−(−ibwl4)+bwl3j−bwl5
Solution
ibwu2j−ibwu2l2−bwu2lj+bwu2l3−ibwl2j+ibwl4+bwl3j−bwl5
Show Solution
