Question
Simplify the expression
kbria2
Evaluate
ab÷ab÷(ak×ab)÷ir
Multiply by the reciprocal
ab÷ab÷(ak×ab)×ri
Divide the terms
1÷(ak×ab)×ri
Multiply the terms
More Steps

Multiply the terms
ak×ab
Multiply the terms
a×akb
Multiply the terms
a2kb
1÷a2kb×ri
Divide the terms
More Steps

Evaluate
1÷a2kb
Multiply by the reciprocal
1×kba2
Any expression multiplied by 1 remains the same
kba2
kba2×ri
Multiply the terms
kbra2i
Solution
kbria2
Show Solution

Find the excluded values
a=0,b=0,k=0,r=0
Evaluate
ab÷ab÷(ak×ab)÷ir
To find the excluded values,set the denominators equal to 0
a=0ab=0ak×ab=0ir=0
Solve the equations
More Steps

Evaluate
ab=0
Cross multiply
b=a×0
Simplify the equation
b=0
a=0b=0ak×ab=0ir=0
Solve the equations
More Steps

Evaluate
ak×ab=0
Multiply the terms
More Steps

Multiply the terms
ak×ab
Multiply the terms
a×akb
Multiply the terms
a2kb
a2kb=0
Cross multiply
kb=a2×0
Simplify the equation
kb=0
Separate the equation into 2 possible cases
k=0b=0
Find the union
b=0k=0
a=0b=0k=0b=0ir=0
Solve the equations
More Steps

Evaluate
ir=0
Divide the terms
More Steps

Evaluate
i1
Multiply by the Conjugate
i×ii
Calculate
−1i
Calculate
−i
−ir=0
Rewrite the expression
r=0
a=0b=0k=0b=0r=0
Solution
a=0,b=0,k=0,r=0
Show Solution
