Question
Function
Find the vertex
Find the axis of symmetry
Rewrite in vertex form
Load more

(−43,−47)
Evaluate
b=−4x2−6x−4
Find the x-coordinate of the vertex by substituting a=−4 and b=−6 into x = −2ab
x=−2(−4)−6
Solve the equation for x
x=−43
Find the y-coordinate of the vertex by evaluating the function for x=−43
b=−4(−43)2−6(−43)−4
Calculate
More Steps

Evaluate
−4(−43)2−6(−43)−4
Multiply the terms
More Steps

Evaluate
−4(−43)2
Evaluate the power
−4×169
Multiply the numbers
−49
−49−6(−43)−4
Multiply the numbers
More Steps

Evaluate
−6(−43)
Multiplying or dividing an even number of negative terms equals a positive
6×43
Reduce the numbers
3×23
Multiply the numbers
23×3
Multiply the numbers
29
−49+29−4
Reduce fractions to a common denominator
−49+2×29×2−2×24×2×2
Multiply the numbers
−49+49×2−2×24×2×2
Multiply the numbers
−49+49×2−44×2×2
Write all numerators above the common denominator
4−9+9×2−4×2×2
Multiply the numbers
4−9+18−4×2×2
Multiply the terms
More Steps

Evaluate
4×2×2
Multiply the terms
8×2
Multiply the numbers
16
4−9+18−16
Calculate the sum or difference
4−7
Use b−a=−ba=−ba to rewrite the fraction
−47
b=−47
Solution
(−43,−47)
Show Solution

Solve the equation
x=4−3+−7−4bx=−43+−7−4b
Evaluate
b=−4x2−6x−4
Swap the sides of the equation
−4x2−6x−4=b
Move the expression to the left side
−4x2−6x−4−b=0
Multiply both sides
4x2+6x+4+b=0
Substitute a=4,b=6 and c=4+b into the quadratic formula x=2a−b±b2−4ac
x=2×4−6±62−4×4(4+b)
Simplify the expression
x=8−6±62−4×4(4+b)
Simplify the expression
More Steps

Evaluate
62−4×4(4+b)
Multiply the terms
More Steps

Multiply the terms
4×4(4+b)
Multiply the terms
16(4+b)
Apply the distributive property
16×4+16b
Multiply the numbers
64+16b
62−(64+16b)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
62−64−16b
Evaluate the power
36−64−16b
Subtract the numbers
−28−16b
x=8−6±−28−16b
Simplify the radical expression
More Steps

Evaluate
−28−16b
Factor the expression
4(−7−4b)
The root of a product is equal to the product of the roots of each factor
4×−7−4b
Evaluate the root
More Steps

Evaluate
4
Write the number in exponential form with the base of 2
22
Reduce the index of the radical and exponent with 2
2
2−7−4b
x=8−6±2−7−4b
Separate the equation into 2 possible cases
x=8−6+2−7−4bx=8−6−2−7−4b
Simplify the expression
More Steps

Evaluate
x=8−6+2−7−4b
Divide the terms
More Steps

Evaluate
8−6+2−7−4b
Rewrite the expression
82(−3+−7−4b)
Cancel out the common factor 2
4−3+−7−4b
x=4−3+−7−4b
x=4−3+−7−4bx=8−6−2−7−4b
Solution
More Steps

Evaluate
x=8−6−2−7−4b
Divide the terms
More Steps

Evaluate
8−6−2−7−4b
Rewrite the expression
82(−3−−7−4b)
Cancel out the common factor 2
4−3−−7−4b
Use b−a=−ba=−ba to rewrite the fraction
−43+−7−4b
x=−43+−7−4b
x=4−3+−7−4bx=−43+−7−4b
Show Solution
