Question
Function
Find the vertex
Find the axis of symmetry
Evaluate the derivative
Load more

(0,0)
Evaluate
b=2222x2×224−20002221224x2×224
Simplify
More Steps

Evaluate
2222x2×224−20002221224x2×224
Multiply the terms
497728x2−20002221224x2×224
Multiply the terms
497728x2−2000222150176x2
Collect like terms by calculating the sum or difference of their coefficients
(497728−2000222150176)x2
Subtract the numbers
More Steps

Evaluate
497728−2000222150176
Reduce fractions to a common denominator
20002221497728×20002221−2000222150176
Write all numerators above the common denominator
20002221497728×20002221−50176
Multiply the numbers
200022219955665453888−50176
Subtract the numbers
200022219955665403712
200022219955665403712x2
b=200022219955665403712x2
Find the x-coordinate of the vertex by substituting a=200022219955665403712 and b=0 into x = −2ab
x=−2×2000222199556654037120
Solve the equation for x
x=0
Find the y-coordinate of the vertex by evaluating the function for x=0
b=200022219955665403712×02
Calculate
More Steps

Evaluate
200022219955665403712×02
Calculate
200022219955665403712×0
Any expression multiplied by 0 equals 0
0
b=0
Solution
(0,0)
Show Solution

Solve the equation
Solve for x
Solve for b
x=1244458175464938413468288406953bx=−1244458175464938413468288406953b
Evaluate
b=2222x2×224−20002221224x2×224
Simplify
More Steps

Evaluate
2222x2×224−20002221224x2×224
Multiply the terms
497728x2−20002221224x2×224
Multiply the terms
497728x2−2000222150176x2
Collect like terms by calculating the sum or difference of their coefficients
(497728−2000222150176)x2
Subtract the numbers
More Steps

Evaluate
497728−2000222150176
Reduce fractions to a common denominator
20002221497728×20002221−2000222150176
Write all numerators above the common denominator
20002221497728×20002221−50176
Multiply the numbers
200022219955665453888−50176
Subtract the numbers
200022219955665403712
200022219955665403712x2
b=200022219955665403712x2
Swap the sides of the equation
200022219955665403712x2=b
Multiply by the reciprocal
200022219955665403712x2×995566540371220002221=b×995566540371220002221
Multiply
x2=b×995566540371220002221
Multiply
x2=995566540371220002221b
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±995566540371220002221b
Simplify the expression
More Steps

Evaluate
995566540371220002221b
Rewrite the expression
995566540371220002221×b
Simplify the root
1244458175464938413468288406953b
x=±1244458175464938413468288406953b
Solution
x=1244458175464938413468288406953bx=−1244458175464938413468288406953b
Show Solution
