Question
{b=2÷3b÷c2÷3b÷c=25
Solve the system of equations
(b,c)=(25,758)
Alternative Form
(b,c)=(2.5,0.106˙)
Evaluate
{b=2÷3b÷c2÷3b÷c=25
Calculate
More Steps

Evaluate
2÷3b÷c
Rewrite the expression
3b2÷c
Multiply by the reciprocal
3b2×c1
Multiply the terms
3bc2
{b=3bc22÷3b÷c=25
Calculate
More Steps

Evaluate
2÷3b÷c
Rewrite the expression
3b2÷c
Multiply by the reciprocal
3b2×c1
Multiply the terms
3bc2
{b=3bc23bc2=25
Solve the equation for b
More Steps

Evaluate
3bc2=25
Evaluate
3cb2=25
Rewrite the expression
3cb=52×2
Divide the terms
3cb=54
Multiply by the reciprocal
3cb×3c1=54×3c1
Multiply
b=54×3c1
Multiply
More Steps

Evaluate
54×3c1
To multiply the fractions,multiply the numerators and denominators separately
5×3c4
Multiply the numbers
15c4
b=15c4
{b=3bc2b=15c4
Substitute the given value of b into the equation b=3bc2
15c4=3×15c4×c2
Simplify
More Steps

Evaluate
3×15c4×c2
Multiply the terms
More Steps

Multiply the terms
3×15c4×c
Multiply the terms
5c4×c
Cancel out the common factor c
54×1
Multiply the terms
54
542
Multiply by the reciprocal
2×45
Reduce the numbers
1×25
Multiply the numbers
25
15c4=25
Rewrite the expression
15c=54×2
Divide the terms
15c=58
Multiply by the reciprocal
15c×151=58×151
Multiply
c=58×151
Multiply
More Steps

Evaluate
58×151
To multiply the fractions,multiply the numerators and denominators separately
5×158
Multiply the numbers
758
c=758
Substitute the given value of c into the equation b=15c4
b=15×7584
Calculate
b=25
Calculate
{b=25c=758
Check the solution
More Steps

Check the solution
{25=2÷(3×25)÷7582÷(3×25)÷758=25
Simplify
{2.5=2.525=25
Evaluate
true
{b=25c=758
Solution
(b,c)=(25,758)
Alternative Form
(b,c)=(2.5,0.106˙)
Show Solution
