Question
Solve the system of equations
(b1,x1)=(−20115,−10115)(b2,x2)=(20115,10115)
Evaluate
{b=200xbx=230
Substitute the given value of b into the equation bx=230
200x×x=230
Simplify
200x2=230
Divide both sides
200200x2=200230
Divide the numbers
x2=200230
Cancel out the common factor 10
x2=2023
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±2023
Simplify the expression
More Steps

Evaluate
2023
To take a root of a fraction,take the root of the numerator and denominator separately
2023
Simplify the radical expression
More Steps

Evaluate
20
Write the expression as a product where the root of one of the factors can be evaluated
4×5
Write the number in exponential form with the base of 2
22×5
The root of a product is equal to the product of the roots of each factor
22×5
Reduce the index of the radical and exponent with 2
25
2523
Multiply by the Conjugate
25×523×5
Multiply the numbers
More Steps

Evaluate
23×5
The product of roots with the same index is equal to the root of the product
23×5
Calculate the product
115
25×5115
Multiply the numbers
More Steps

Evaluate
25×5
When a square root of an expression is multiplied by itself,the result is that expression
2×5
Multiply the terms
10
10115
x=±10115
Separate the equation into 2 possible cases
x=10115∪x=−10115
Rearrange the terms
{b=200xx=10115∪{b=200xx=−10115
Calculate
More Steps

Evaluate
{b=200xx=10115
Substitute the given value of x into the equation b=200x
b=200×10115
Calculate
b=20115
Calculate
{b=20115x=10115
{b=20115x=10115∪{b=200xx=−10115
Calculate
More Steps

Evaluate
{b=200xx=−10115
Substitute the given value of x into the equation b=200x
b=200(−10115)
Calculate
b=−20115
Calculate
{b=−20115x=−10115
{b=20115x=10115∪{b=−20115x=−10115
Calculate
{b=−20115x=−10115∪{b=20115x=10115
Check the solution
More Steps

Check the solution
⎩⎨⎧−20115=200(−10115)−20115×(−10115)=230
Simplify
{−214.476106=−214.476106230=230
Evaluate
true
{b=−20115x=−10115∪{b=20115x=10115
Check the solution
More Steps

Check the solution
{20115=200×1011520115×10115=230
Simplify
{214.476106=214.476106230=230
Evaluate
true
{b=−20115x=−10115∪{b=20115x=10115
Solution
(b1,x1)=(−20115,−10115)(b2,x2)=(20115,10115)
Show Solution
