Question
Solve the equation
Solve for a
Solve for b
a=41+1+8b2−8ba=41−1+8b2−8b
Evaluate
b(b−1)=a(2a−1)
Rewrite the expression
b2−b=a(2a−1)
Swap the sides of the equation
a(2a−1)=b2−b
Expand the expression
More Steps

Evaluate
a(2a−1)
Apply the distributive property
a×2a−a×1
Multiply the terms
More Steps

Evaluate
a×2a
Use the commutative property to reorder the terms
2a×a
Multiply the terms
2a2
2a2−a×1
Any expression multiplied by 1 remains the same
2a2−a
2a2−a=b2−b
Move the expression to the left side
2a2−a−(b2−b)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2a2−a−b2+b=0
Substitute a=2,b=−1 and c=−b2+b into the quadratic formula a=2a−b±b2−4ac
a=2×21±(−1)2−4×2(−b2+b)
Simplify the expression
a=41±(−1)2−4×2(−b2+b)
Simplify the expression
More Steps

Evaluate
(−1)2−4×2(−b2+b)
Evaluate the power
1−4×2(−b2+b)
Multiply the terms
More Steps

Multiply the terms
4×2(−b2+b)
Multiply the terms
8(−b2+b)
Apply the distributive property
−8b2+8b
1−(−8b2+8b)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+8b2−8b
a=41±1+8b2−8b
Solution
a=41+1+8b2−8ba=41−1+8b2−8b
Show Solution
