Question
Simplify the expression
b−5040b26
Evaluate
b−b×1×b2×b3×b4×b5×b6×b×7b×8b×9b×10b
Rewrite the expression in exponential form
b−b6×1×b2×b3×b4×b5×b6×7×8×9×10
Solution
More Steps

Multiply the terms
b6×1×b2×b3×b4×b5×b6×7×8×9×10
Rewrite the expression
b6×b2×b3×b4×b5×b6×7×8×9×10
Multiply the terms with the same base by adding their exponents
b6+2+3+4+5+6×7×8×9×10
Add the numbers
b26×7×8×9×10
Multiply the terms
More Steps

Evaluate
7×8×9×10
Multiply the terms
56×9×10
Multiply the terms
504×10
Multiply the numbers
5040
b26×5040
Use the commutative property to reorder the terms
5040b26
b−5040b26
Show Solution

Factor the expression
b(1−5040b25)
Evaluate
b−b×1×b2×b3×b4×b5×b6×b×7b×8b×9b×10b
Multiply the terms
More Steps

Evaluate
b×1×b2×b3×b4×b5×b6×b×7b×8b×9b×10b
Rewrite the expression
b×b2×b3×b4×b5×b6×b×7b×8b×9b×10b
Multiply the terms with the same base by adding their exponents
b1+2+3+4+5+6+1+1+1+1+1×7×8×9×10
Add the numbers
b26×7×8×9×10
Multiply the terms
More Steps

Evaluate
7×8×9×10
Multiply the terms
56×9×10
Multiply the terms
504×10
Multiply the numbers
5040
b26×5040
Use the commutative property to reorder the terms
5040b26
b−5040b26
Rewrite the expression
b−b×5040b25
Solution
b(1−5040b25)
Show Solution

Find the roots
b1=0,b2=504025504024
Alternative Form
b1=0,b2≈0.711054
Evaluate
b−b×1×b2×b3×b4×b5×b6×b×7b×8b×9b×10b
To find the roots of the expression,set the expression equal to 0
b−b×1×b2×b3×b4×b5×b6×b×7b×8b×9b×10b=0
Multiply the terms
More Steps

Multiply the terms
b×1×b2×b3×b4×b5×b6×b×7b×8b×9b×10b
Rewrite the expression
b×b2×b3×b4×b5×b6×b×7b×8b×9b×10b
Multiply the terms with the same base by adding their exponents
b1+2+3+4+5+6+1+1+1+1+1×7×8×9×10
Add the numbers
b26×7×8×9×10
Multiply the terms
More Steps

Evaluate
7×8×9×10
Multiply the terms
56×9×10
Multiply the terms
504×10
Multiply the numbers
5040
b26×5040
Use the commutative property to reorder the terms
5040b26
b−5040b26=0
Factor the expression
b(1−5040b25)=0
Separate the equation into 2 possible cases
b=01−5040b25=0
Solve the equation
More Steps

Evaluate
1−5040b25=0
Move the constant to the right-hand side and change its sign
−5040b25=0−1
Removing 0 doesn't change the value,so remove it from the expression
−5040b25=−1
Change the signs on both sides of the equation
5040b25=1
Divide both sides
50405040b25=50401
Divide the numbers
b25=50401
Take the 25-th root on both sides of the equation
25b25=2550401
Calculate
b=2550401
Simplify the root
More Steps

Evaluate
2550401
To take a root of a fraction,take the root of the numerator and denominator separately
255040251
Simplify the radical expression
2550401
Multiply by the Conjugate
255040×2550402425504024
Multiply the numbers
504025504024
b=504025504024
b=0b=504025504024
Solution
b1=0,b2=504025504024
Alternative Form
b1=0,b2≈0.711054
Show Solution
