Question
Find the roots
c1=21−1697,c2=21+1697
Alternative Form
c1≈−20.09733,c2≈21.09733
Evaluate
c+424−c2
To find the roots of the expression,set the expression equal to 0
c+424−c2=0
Rewrite in standard form
−c2+c+424=0
Multiply both sides
c2−c−424=0
Substitute a=1,b=−1 and c=−424 into the quadratic formula c=2a−b±b2−4ac
c=21±(−1)2−4(−424)
Simplify the expression
More Steps

Evaluate
(−1)2−4(−424)
Evaluate the power
1−4(−424)
Multiply the numbers
More Steps

Evaluate
4(−424)
Multiplying or dividing an odd number of negative terms equals a negative
−4×424
Multiply the numbers
−1696
1−(−1696)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+1696
Add the numbers
1697
c=21±1697
Separate the equation into 2 possible cases
c=21+1697c=21−1697
Solution
c1=21−1697,c2=21+1697
Alternative Form
c1≈−20.09733,c2≈21.09733
Show Solution
