Question
Simplify the expression
33c2−400x5c12−18c3
Evaluate
c2−4x4c2(20×12c)c3×60c2×3xc4−6c3
Remove the parentheses
c2−4x4c2×20×12cc3×60c2×3xc4−6c3
Multiply
More Steps

Multiply the terms
−4x4c2×20×12cc3×60c2×3xc4
Multiply the terms
More Steps

Evaluate
4×20×60
Multiply the terms
80×60
Multiply the numbers
4800
−4800x4c2×12cc3×c2×3xc4
Multiply the terms with the same base by adding their exponents
−4800x4c2+3+2+4×12c×3x
Add the numbers
−4800x4c11×12c×3x
Multiply the terms
More Steps

Evaluate
4800x4c11×12c×3x
Multiply the terms
400x4c12×3x
Multiply the terms
3400x4c12x
Multiply the terms
3400x5c12
−3400x5c12
c2−3400x5c12−6c3
Reduce fractions to a common denominator
3c2×3−3400x5c12−36c3×3
Write all numerators above the common denominator
3c2×3−400x5c12−6c3×3
Use the commutative property to reorder the terms
33c2−400x5c12−6c3×3
Solution
33c2−400x5c12−18c3
Show Solution
