Question
Simplify the expression
1000c6−20178074
Evaluate
c6×1000−4−6÷2017
Use the commutative property to reorder the terms
1000c6−4−6÷2017
Rewrite the expression
1000c6−4−20176
Solution
More Steps

Evaluate
−4−20176
Reduce fractions to a common denominator
−20174×2017−20176
Write all numerators above the common denominator
2017−4×2017−6
Multiply the numbers
2017−8068−6
Subtract the numbers
2017−8074
Use b−a=−ba=−ba to rewrite the fraction
−20178074
1000c6−20178074
Show Solution

Factor the expression
20172(1008500c6−4037)
Evaluate
c6×1000−4−6÷2017
Use the commutative property to reorder the terms
1000c6−4−6÷2017
Rewrite the expression
1000c6−4−20176
Subtract the numbers
More Steps

Evaluate
−4−20176
Reduce fractions to a common denominator
−20174×2017−20176
Write all numerators above the common denominator
2017−4×2017−6
Multiply the numbers
2017−8068−6
Subtract the numbers
2017−8074
Use b−a=−ba=−ba to rewrite the fraction
−20178074
1000c6−20178074
Solution
20172(1008500c6−4037)
Show Solution

Find the roots
c1=−100850064037×10085005,c2=100850064037×10085005
Alternative Form
c1≈−0.398471,c2≈0.398471
Evaluate
c6×1000−4−6÷2017
To find the roots of the expression,set the expression equal to 0
c6×1000−4−6÷2017=0
Use the commutative property to reorder the terms
1000c6−4−6÷2017=0
Rewrite the expression
1000c6−4−20176=0
Subtract the numbers
More Steps

Simplify
1000c6−4−20176
Subtract the numbers
More Steps

Evaluate
−4−20176
Reduce fractions to a common denominator
−20174×2017−20176
Write all numerators above the common denominator
2017−4×2017−6
Multiply the numbers
2017−8068−6
Subtract the numbers
2017−8074
Use b−a=−ba=−ba to rewrite the fraction
−20178074
1000c6−20178074
1000c6−20178074=0
Move the constant to the right-hand side and change its sign
1000c6=0+20178074
Add the terms
1000c6=20178074
Multiply by the reciprocal
1000c6×10001=20178074×10001
Multiply
c6=20178074×10001
Multiply
More Steps

Evaluate
20178074×10001
Reduce the numbers
20174037×5001
To multiply the fractions,multiply the numerators and denominators separately
2017×5004037
Multiply the numbers
10085004037
c6=10085004037
Take the root of both sides of the equation and remember to use both positive and negative roots
c=±610085004037
Simplify the expression
More Steps

Evaluate
610085004037
To take a root of a fraction,take the root of the numerator and denominator separately
6100850064037
Multiply by the Conjugate
61008500×61008500564037×610085005
The product of roots with the same index is equal to the root of the product
61008500×61008500564037×10085005
Multiply the numbers
More Steps

Evaluate
61008500×610085005
The product of roots with the same index is equal to the root of the product
61008500×10085005
Calculate the product
610085006
Reduce the index of the radical and exponent with 6
1008500
100850064037×10085005
c=±100850064037×10085005
Separate the equation into 2 possible cases
c=100850064037×10085005c=−100850064037×10085005
Solution
c1=−100850064037×10085005,c2=100850064037×10085005
Alternative Form
c1≈−0.398471,c2≈0.398471
Show Solution
