Question
Simplify the expression
c3−c7−504c14
Evaluate
c×1×c2−c3×c4−c5×c6×c×7c×8c×9−c×10c×11c×12c×13c×14c×15c×16c×17c×18c×19c2×0
Any expression multiplied by 0 equals 0
c×1×c2−c3×c4−c5×c6×c×7c×8c×9−0
Rewrite the expression in exponential form
c×1×c2−c3×c4−c5×c6×c3×7×8×9−0
Multiply the terms
More Steps

Multiply the terms
c×1×c2
Rewrite the expression
c×c2
Use the product rule an×am=an+m to simplify the expression
c1+2
Add the numbers
c3
c3−c3×c4−c5×c6×c3×7×8×9−0
Multiply the terms
More Steps

Evaluate
c3×c4
Use the product rule an×am=an+m to simplify the expression
c3+4
Add the numbers
c7
c3−c7−c5×c6×c3×7×8×9−0
Multiply
More Steps

Multiply the terms
−c5×c6×c3×7×8×9
Multiply the terms with the same base by adding their exponents
−c5+6+3×7×8×9
Add the numbers
−c14×7×8×9
Multiply the terms
More Steps

Evaluate
7×8×9
Multiply the terms
56×9
Multiply the numbers
504
−c14×504
Use the commutative property to reorder the terms
−504c14
c3−c7−504c14−0
Solution
c3−c7−504c14
Show Solution

Factor the expression
c3(1−c4−504c11)
Evaluate
c×1×c2−c3×c4−c5×c6×c×7c×8c×9−c×10c×11c×12c×13c×14c×15c×16c×17c×18c×19c2×0
Multiply the terms
More Steps

Multiply the terms
c×1×c2
Rewrite the expression
c×c2
Use the product rule an×am=an+m to simplify the expression
c1+2
Add the numbers
c3
c3−c3×c4−c5×c6×c×7c×8c×9−c×10c×11c×12c×13c×14c×15c×16c×17c×18c×19c2×0
Multiply the terms
More Steps

Evaluate
c3×c4
Use the product rule an×am=an+m to simplify the expression
c3+4
Add the numbers
c7
c3−c7−c5×c6×c×7c×8c×9−c×10c×11c×12c×13c×14c×15c×16c×17c×18c×19c2×0
Multiply
More Steps

Multiply the terms
c5×c6×c×7c×8c×9
Multiply the terms with the same base by adding their exponents
c5+6+1+1+1×7×8×9
Add the numbers
c14×7×8×9
Multiply the terms
More Steps

Evaluate
7×8×9
Multiply the terms
56×9
Multiply the numbers
504
c14×504
Use the commutative property to reorder the terms
504c14
c3−c7−504c14−c×10c×11c×12c×13c×14c×15c×16c×17c×18c×19c2×0
Multiply
More Steps

Multiply the terms
c×10c×11c×12c×13c×14c×15c×16c×17c×18c×19c2×0
Multiply the terms with the same base by adding their exponents
c1+2×10c×11c×12c×13c×14c×15c×16c×17c×18c×19×0
Add the numbers
c3×10c×11c×12c×13c×14c×15c×16c×17c×18c×19×0
Multiply the terms
More Steps

Evaluate
10×11×12×13×14×15×16×17×18×19×0
Multiply the terms
110×12×13×14×15×16×17×18×19×0
Multiply the terms
1320×13×14×15×16×17×18×19×0
Multiply the terms
17160×14×15×16×17×18×19×0
Multiply the terms
240240×15×16×17×18×19×0
Multiply the terms
3603600×16×17×18×19×0
Multiply the terms
57657600×17×18×19×0
Multiply the terms
980179200×18×19×0
Multiply the terms
17643225600×19×0
Multiply the terms
335221286400×0
Any expression multiplied by 0 equals 0
0
c3×0×c×c×c×c×c×c×c×c×c
Multiply the terms with the same base by adding their exponents
0×c1+3+1+1+1+1+1+1+1+1
Add the numbers
0×c12
Any expression multiplied by 0 equals 0
0
c3−c7−504c14−0
Removing 0 doesn't change the value,so remove it from the expression
c3−c7−504c14
Rewrite the expression
c3−c3×c4−c3×504c11
Solution
c3(1−c4−504c11)
Show Solution
