Question
Simplify the expression
2cos(a)−sec(a)−1
Evaluate
cos(a)−sin(a)×cos(a)1×sin(a)−1
Multiply
More Steps

Multiply the terms
sin(a)×cos(a)1×sin(a)
Multiply the terms
sin2(a)×cos(a)1
Multiply the terms
cos(a)sin2(a)
cos(a)−cos(a)sin2(a)−1
Use sin2t=1−cos2t to transform the expression
cos(a)−cos(a)1−cos2(a)−1
Subtract the terms
More Steps

Evaluate
cos(a)−cos(a)1−cos2(a)
Reduce fractions to a common denominator
cos(a)cos(a)cos(a)−cos(a)1−cos2(a)
Write all numerators above the common denominator
cos(a)cos(a)cos(a)−(1−cos2(a))
Multiply the terms
cos(a)cos2(a)−(1−cos2(a))
Subtract the terms
More Steps

Evaluate
cos2(a)−(1−cos2(a))
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
cos2(a)−1+cos2(a)
Add the terms
2cos2(a)−1
cos(a)2cos2(a)−1
cos(a)2cos2(a)−1−1
Reduce fractions to a common denominator
cos(a)2cos2(a)−1−cos(a)cos(a)
Write all numerators above the common denominator
cos(a)2cos2(a)−1−cos(a)
Transform the expression
2cos(a)−cos(a)1−1
Solution
2cos(a)−sec(a)−1
Show Solution
