Question
Simplify the expression
22cos(a)−sin(6a)sec(a)
Evaluate
cos(a)−cos(a)cos(3a)×sin(a)×sin(a)sin(3a)
Multiply the terms
More Steps

Multiply the terms
cos(a)cos(3a)×sin(a)×sin(a)sin(3a)
Multiply the terms
cos(a)cos(3a)sin(a)×sin(a)sin(3a)
Cancel out the common factor sin(a)
cos(a)cos(3a)×sin(3a)
Multiply the terms
cos(a)cos(3a)sin(3a)
cos(a)−cos(a)cos(3a)sin(3a)
Transform the expression
More Steps

Evaluate
cos(a)cos(3a)sin(3a)
Transform the expression
cos(a)2sin(6a)
Multiply by the reciprocal
2sin(6a)×cos(a)1
Multiply the terms
2cos(a)sin(6a)
cos(a)−2cos(a)sin(6a)
Transform the expression
cos(a)−2sin(6a)sec(a)
Solution
22cos(a)−sin(6a)sec(a)
Show Solution
