Question
Solve the equation
x=6π+32kπ,k∈Z
Alternative Form
x=30∘+120∘k,k∈Z
Alternative Form
x≈0.523599+32kπ,k∈Z
Evaluate
cot2(x)−csc(x)=1
Find the domain
cot2(x)−csc(x)=1,x=kπ,k∈Z
Use cot2(x)=csc2(x)−1 to rewrite the expression
csc2(x)−1−csc(x)=1
Move the expression to the left side
csc2(x)−2−csc(x)=0
Factor the expression
More Steps

Evaluate
csc2(x)−2−csc(x)
Reorder the terms
csc2(x)−csc(x)−2
Rewrite the expression
csc2(x)+(1−2)csc(x)−2
Calculate
csc2(x)+csc(x)−2csc(x)−2
Rewrite the expression
csc(x)csc(x)+csc(x)−2csc(x)−2
Factor out csc(x) from the expression
csc(x)(csc(x)+1)−2csc(x)−2
Factor out −2 from the expression
csc(x)(csc(x)+1)−2(csc(x)+1)
Factor out csc(x)+1 from the expression
(csc(x)−2)(csc(x)+1)
(csc(x)−2)(csc(x)+1)=0
When the product of factors equals 0,at least one factor is 0
csc(x)−2=0csc(x)+1=0
Solve the equation for csc(x)
More Steps

Evaluate
csc(x)−2=0
Move the constant to the right-hand side and change its sign
csc(x)=0+2
Removing 0 doesn't change the value,so remove it from the expression
csc(x)=2
csc(x)=2csc(x)+1=0
Solve the equation for csc(x)
More Steps

Evaluate
csc(x)+1=0
Move the constant to the right-hand side and change its sign
csc(x)=0−1
Removing 0 doesn't change the value,so remove it from the expression
csc(x)=−1
csc(x)=2csc(x)=−1
Calculate
More Steps

Evaluate
csc(x)=2
Use the inverse trigonometric function
x=arccsc(2)
Calculate
x=6πx=65π
Add the period of 2kπ,k∈Z to find all solutions
x=6π+2kπ,k∈Zx=65π+2kπ,k∈Z
Find the union
x={6π+2kπ65π+2kπ,k∈Z
x={6π+2kπ65π+2kπ,k∈Zcsc(x)=−1
Calculate
More Steps

Evaluate
csc(x)=−1
Use the inverse trigonometric function
x=arccsc(−1)
Calculate
x=23π
Add the period of 2kπ,k∈Z to find all solutions
x=23π+2kπ,k∈Z
x={6π+2kπ65π+2kπ,k∈Zx=23π+2kπ,k∈Z
Find the union
x=6π+32kπ,k∈Z
Check if the solution is in the defined range
x=6π+32kπ,k∈Z,x=kπ,k∈Z
Solution
x=6π+32kπ,k∈Z
Alternative Form
x=30∘+120∘k,k∈Z
Alternative Form
x≈0.523599+32kπ,k∈Z
Show Solution
