Question
Simplify the expression
−eiv2rt2na2cos(x)−eirn(vcot(x)×ta)2cos(x)
Evaluate
csc(x)cot(x)×antirivative
Rewrite the expression in exponential form
csc(x)cot(x)×anti3rvatve
Evaluate the power
More Steps

Evaluate
i3
Calculate
i2×i
Calculate
−i
csc(x)cot(x)×ant(−i)rvatve
Rewrite the expression
−csc(x)cot(x)×antirvatve
Multiply the terms
−csc(x)cot(x)×a2ntirvtve
Multiply the terms
−csc(x)cot(x)×a2nt2irv×ve
Multiply the terms
−csc(x)cot(x)×a2nt2irv2e
Multiply the terms
More Steps

Evaluate
csc(x)cot(x)×a2nt2irv2e
Use the commutative property to reorder the terms
icsc(x)cot(x)×a2nt2rv2e
Multiply the terms
eicsc(x)cot(x)×a2nt2rv2
−eicsc(x)cot(x)×a2nt2rv2
Calculate
−ei×sin(x)1×cot(x)×a2nt2rv2
Calculate
−ei×sin(x)1×sin(x)cos(x)×a2nt2rv2
Calculate
−sin2(x)eicos(x)×a2nt2rv2
Rewrite the expression
−sin2(x)eiv2rt2na2cos(x)
Rewrite the expression
−eiv2sin−2(x)×rt2na2cos(x)
Rewrite the expression
−eicos(x)×a2nt2rsin−2(x)×v2
Rewrite the expression
−eisin−2(x)×a2nt2rv2cos(x)
Rewrite the expression
−eicos(x)×v2rt2na2sin−2(x)
Rearrange the terms
−eiv2rt2na2cos(x)sin−2(x)
Rewrite the expression
−eia2nt2rv2sin−2(x)cos(x)
Rewrite the expression
−eicos(x)sin−2(x)×v2rt2na2
Rewrite the expression
−eisin−2(x)×v2rt2na2cos(x)
Calculate
−ei(1+cot2(x))v2rt2na2cos(x)
Calculate
(−ei−eicot2(x))v2rt2na2cos(x)
Rewrite the expression
−eia2nt2rv2cos(x)−eicos(x)(atvcot(x))2nr
Solution
−eiv2rt2na2cos(x)−eirn(vcot(x)×ta)2cos(x)
Show Solution
