Question
Solve the equation
Solve for d
Solve for z
d=8πzπz2−2
Evaluate
dπ×2z=22z×1π×1×z−1
Multiply the terms
More Steps

Evaluate
dπ×2z
Use the commutative property to reorder the terms
πd×2z
Use the commutative property to reorder the terms
2πdz
2πdz=22z×1π×1×z−1
Simplify
More Steps

Evaluate
22z×1π×1×z−1
Any expression multiplied by 1 remains the same
22zπ×1×z−1
Multiply the terms
More Steps

Multiply the terms
2zπ×1×z
Rewrite the expression
2zπz
Multiply the terms
2πzz
Multiply the terms
2πz×z
Multiply the terms
2πz2
22πz2−1
Rewrite the expression
More Steps

Evaluate
2πz2−1
Reduce fractions to a common denominator
2πz2−22
Write all numerators above the common denominator
2πz2−2
22πz2−2
Multiply by the reciprocal
2πz2−2×21
Multiply the terms
2×2πz2−2
Multiply the terms
4πz2−2
2πdz=4πz2−2
Rewrite the expression
2πzd=4πz2−2
Multiply by the reciprocal
2πzd×2πz1=4πz2−2×2πz1
Multiply
d=4πz2−2×2πz1
Solution
More Steps

Evaluate
4πz2−2×2πz1
To multiply the fractions,multiply the numerators and denominators separately
4×2πzπz2−2
Multiply the numbers
8πzπz2−2
d=8πzπz2−2
Show Solution
