Question
Evaluate the derivative
−arcsin2(x)(1−x2)1−x2
Evaluate
dxd(arcsin(x)1)
Rewrite the expression in exponential form
dxd(arcsin−1(x))
Use the chain rule dxd(f(g))=dgd(f(g))×dxd(g) where the g=arcsin(x), to find the derivative
dgd(g−1)×dxd(arcsin(x))
Use dxdxn=nxn−1 to find derivative
−g−2×dxd(arcsin(x))
Use dxd(arcsinx)=1−x21 to find derivative
−g−2×1−x21
Substitute back
−arcsin−2(x)×1−x21
Express with a positive exponent using a−n=an1
−arcsin2(x)1×1−x21
Multiply the terms
−arcsin2(x)×1−x21
Multiply by the Conjugate
−arcsin2(x)×1−x2×1−x21×1−x2
Calculate
−arcsin2(x)(1−x2)1×1−x2
Solution
−arcsin2(x)(1−x2)1−x2
Show Solution
