Question
Simplify the expression
d21
Evaluate
vd÷(d×vd)÷d
Multiply the terms
More Steps

Multiply the terms
d×vd
Multiply the terms
vd×d
Multiply the terms
vd2
vd÷vd2÷d
Divide the terms
More Steps

Evaluate
vd÷vd2
Multiply by the reciprocal
vd×d2v
Cancel out the common factor d
v1×dv
Cancel out the common factor v
1×d1
Multiply the terms
d1
d1÷d
Multiply by the reciprocal
d1×d1
Multiply the terms
d×d1
Solution
d21
Show Solution

Find the excluded values
v=0,d=0
Evaluate
vd÷(d×vd)÷d
To find the excluded values,set the denominators equal to 0
v=0d×vd=0d=0
Solve the equations
More Steps

Evaluate
d×vd=0
Multiply the terms
More Steps

Multiply the terms
d×vd
Multiply the terms
vd×d
Multiply the terms
vd2
vd2=0
Cross multiply
d2=v×0
Simplify the equation
d2=0
The only way a power can be 0 is when the base equals 0
d=0
v=0d=0d=0
Solution
v=0,d=0
Show Solution
