Question Function Find the vertex Find the axis of symmetry Rewrite in vertex form Load more (23,−89) Evaluate d=n×2n−3Simplify d=2n(n−3)Write the quadratic function in standard form d=21n2−23nFind the n-coordinate of the vertex by substituting a=21 and b=−23 into n = −2ab n=−2×21−23Solve the equation for n n=23Find the y-coordinate of the vertex by evaluating the function for n=23 d=21(23)2−23×23Calculate More Steps Evaluate 21(23)2−23×23Multiply the numbers More Steps Evaluate 21(23)2Evaluate the power 21×2232To multiply the fractions,multiply the numerators and denominators separately 2×2232Multiply the numbers 2332 2332−23×23Multiply the numbers More Steps Evaluate 23×23To multiply the fractions,multiply the numerators and denominators separately 2×23×3Multiply the numbers 2×29Multiply the numbers 49 2332−49Evaluate the power More Steps Evaluate 2332Evaluate the power 239Evaluate the power 89 89−49Reduce fractions to a common denominator 89−4×29×2Multiply the numbers 89−89×2Write all numerators above the common denominator 89−9×2Multiply the numbers 89−18Subtract the numbers 8−9Use b−a=−ba=−ba to rewrite the fraction −89 d=−89Solution (23,−89) Show Solution Solve the equation Solve for d Solve for n d=2n2−3n Evaluate d=n×2n−3Simplify d=2n(n−3)Solution d=2n2−3n Show Solution Graph