Question Simplify the expression 116622Alternative Form 1.16622×105 Evaluate d4×d4341×342Multiply the terms More Steps Multiply the terms d4×d4341Cancel out the common factor d4 1×341Multiply the terms 341 341×342Solution 116622Alternative Form 1.16622×105 Show Solution Find the excluded values d=0 Evaluate d4×d4341×342To find the excluded values,set the denominators equal to 0 d4=0Solution d=0 Show Solution Find the roots d∈∅ Evaluate d4×d4341×342To find the roots of the expression,set the expression equal to 0 d4×d4341×342=0The only way a power can not be 0 is when the base not equals 0 d4×d4341×342=0,d=0Calculate d4×d4341×342=0Multiply the terms More Steps Multiply the terms d4×d4341×342Multiply the terms More Steps Multiply the terms d4×d4341Cancel out the common factor d4 1×341Multiply the terms 341 341×342Multiply the numbers 116622 116622=0Solution d∈∅ Show Solution