Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
d1=19−515,d2=19+515
Alternative Form
d1≈−0.364917,d2≈38.364917
Evaluate
d×d−14=38d
Multiply the terms
d2−14=38d
Move the expression to the left side
d2−14−38d=0
Rewrite in standard form
d2−38d−14=0
Substitute a=1,b=−38 and c=−14 into the quadratic formula d=2a−b±b2−4ac
d=238±(−38)2−4(−14)
Simplify the expression
More Steps

Evaluate
(−38)2−4(−14)
Multiply the numbers
More Steps

Evaluate
4(−14)
Multiplying or dividing an odd number of negative terms equals a negative
−4×14
Multiply the numbers
−56
(−38)2−(−56)
Rewrite the expression
382−(−56)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
382+56
Evaluate the power
1444+56
Add the numbers
1500
d=238±1500
Simplify the radical expression
More Steps

Evaluate
1500
Write the expression as a product where the root of one of the factors can be evaluated
100×15
Write the number in exponential form with the base of 10
102×15
The root of a product is equal to the product of the roots of each factor
102×15
Reduce the index of the radical and exponent with 2
1015
d=238±1015
Separate the equation into 2 possible cases
d=238+1015d=238−1015
Simplify the expression
More Steps

Evaluate
d=238+1015
Divide the terms
More Steps

Evaluate
238+1015
Rewrite the expression
22(19+515)
Reduce the fraction
19+515
d=19+515
d=19+515d=238−1015
Simplify the expression
More Steps

Evaluate
d=238−1015
Divide the terms
More Steps

Evaluate
238−1015
Rewrite the expression
22(19−515)
Reduce the fraction
19−515
d=19−515
d=19+515d=19−515
Solution
d1=19−515,d2=19+515
Alternative Form
d1≈−0.364917,d2≈38.364917
Show Solution
