Question
Simplify the expression
p−p2d3x−d2x−d3p+d2p
Evaluate
d(1×p×1−p2x−p×1)(d2−d×1)
Remove the parentheses
d×1×p×1−p2x−p×1×(d2−d×1)
Any expression multiplied by 1 remains the same
d×1×p×1−p2x−p×1×(d2−d)
Any expression multiplied by 1 remains the same
d×1×p×1−p2x−p×(d2−d)
Any expression multiplied by 1 remains the same
d×1×p−p2x−p×(d2−d)
Rewrite the expression
d×p−p2x−p×(d2−d)
Multiply the terms
p−p2d(x−p)×(d2−d)
Multiply the terms
p−p2d(x−p)(d2−d)
Solution
More Steps

Evaluate
d(x−p)(d2−d)
Multiply the terms
(dx−dp)(d2−d)
Apply the distributive property
dxd2−dxd−dpd2−(−dpd)
Multiply the terms
More Steps

Evaluate
d×d2
Use the product rule an×am=an+m to simplify the expression
d1+2
Add the numbers
d3
d3x−dxd−dpd2−(−dpd)
Multiply the terms
d3x−d2x−dpd2−(−dpd)
Multiply the terms
More Steps

Evaluate
d×d2
Use the product rule an×am=an+m to simplify the expression
d1+2
Add the numbers
d3
d3x−d2x−d3p−(−dpd)
Multiply the terms
d3x−d2x−d3p−(−d2p)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
d3x−d2x−d3p+d2p
p−p2d3x−d2x−d3p+d2p
Show Solution

Find the excluded values
p=0,p=1
Evaluate
d(1×p×1−p2x−p×1)(d2−d×1)
To find the excluded values,set the denominators equal to 0
p×1−p2=0
Any expression multiplied by 1 remains the same
p−p2=0
Factor the expression
More Steps

Evaluate
p−p2
Rewrite the expression
p−p×p
Factor out p from the expression
p(1−p)
p(1−p)=0
When the product of factors equals 0,at least one factor is 0
p=01−p=0
Solve the equation for p
More Steps

Evaluate
1−p=0
Move the constant to the right-hand side and change its sign
−p=0−1
Removing 0 doesn't change the value,so remove it from the expression
−p=−1
Change the signs on both sides of the equation
p=1
p=0p=1
Solution
p=0,p=1
Show Solution
