Question
Simplify the expression
8d7−185e
Evaluate
d×d6×8−185e−0
Multiply
More Steps

Multiply the terms
d×d6×8
Multiply the terms with the same base by adding their exponents
d1+6×8
Add the numbers
d7×8
Use the commutative property to reorder the terms
8d7
8d7−185e−0
Solution
8d7−185e
Show Solution

Find the roots
d=272960e
Alternative Form
d≈1.806803
Evaluate
d×d6×8−185e−0
To find the roots of the expression,set the expression equal to 0
d×d6×8−185e−0=0
Multiply
More Steps

Multiply the terms
d×d6×8
Multiply the terms with the same base by adding their exponents
d1+6×8
Add the numbers
d7×8
Use the commutative property to reorder the terms
8d7
8d7−185e−0=0
Removing 0 doesn't change the value,so remove it from the expression
8d7−185e=0
Move the constant to the right-hand side and change its sign
8d7=0+185e
Add the terms
8d7=185e
Divide both sides
88d7=8185e
Divide the numbers
d7=8185e
Take the 7-th root on both sides of the equation
7d7=78185e
Calculate
d=78185e
Solution
More Steps

Evaluate
78185e
To take a root of a fraction,take the root of the numerator and denominator separately
787185e
Multiply by the Conjugate
78×7867185e×786
Simplify
78×7867185e×22716
Multiply the numbers
More Steps

Evaluate
7185e×22716
Multiply the terms
72960e×22
Use the commutative property to reorder the terms
2272960e
78×7862272960e
Multiply the numbers
More Steps

Evaluate
78×786
The product of roots with the same index is equal to the root of the product
78×86
Calculate the product
787
Transform the expression
7221
Reduce the index of the radical and exponent with 7
23
232272960e
Reduce the fraction
More Steps

Evaluate
2322
Use the product rule aman=an−m to simplify the expression
23−21
Subtract the terms
211
Simplify
21
272960e
d=272960e
Alternative Form
d≈1.806803
Show Solution
