Question
df=fdr
Solve the differential equation
r=ln(f)+C,C∈R
Evaluate
df=fdr
Swap the sides
fdr=df
Rewrite the expression
dr=f1×df
Integrate the left-hand side of the equation with respect to r and the right-hand side of the equation with respect to f
∫1dr=∫f1df
Calculate
More Steps

Evaluate
∫1dr
Use the property of integral ∫kdx=kx
r
Add the constant of integral C1
r+C1,C1∈R
r+C1=∫f1df,C1∈R
Calculate
More Steps

Evaluate
∫f1df
Use the property of integral ∫x1dx=ln∣x∣
ln(f)
Add the constant of integral C2
ln(f)+C2,C2∈R
r+C1=ln(f)+C2,C1∈R,C2∈R
Solution
r=ln(f)+C,C∈R
Show Solution
