Question
Solve the differential equation
v=er+C,C∈R
Evaluate
e=drdv
Rewrite the expression
drdv=e
Transform the expression
dv=edr
Integrate the left-hand side of the equation with respect to v and the right-hand side of the equation with respect to r
∫1dv=∫edr
Calculate
More Steps

Evaluate
∫1dv
Use the property of integral ∫kdx=kx
v
Add the constant of integral C1
v+C1,C1∈R
v+C1=∫edr,C1∈R
Calculate
More Steps

Evaluate
∫edr
Use the property of integral ∫kdx=kx
er
Add the constant of integral C2
er+C2,C2∈R
v+C1=er+C2,C1∈R,C2∈R
Solution
v=er+C,C∈R
Show Solution
