Question
Simplify the expression
99e5−d4
Evaluate
e5−d5÷(d×9)
Use the commutative property to reorder the terms
e5−d5÷9d
Divide the terms
More Steps

Evaluate
d5÷9d
Rewrite the expression
9dd5
Use the product rule aman=an−m to simplify the expression
9d5−1
Reduce the fraction
9d4
e5−9d4
Reduce fractions to a common denominator
9e5×9−9d4
Write all numerators above the common denominator
9e5×9−d4
Solution
99e5−d4
Show Solution

Find the excluded values
d=0
Evaluate
e5−d5÷(d×9)
To find the excluded values,set the denominators equal to 0
d×9=0
Use the commutative property to reorder the terms
9d=0
Solution
d=0
Show Solution

Find the roots
d1=−e49e,d2=e49e
Alternative Form
d1≈−6.045451,d2≈6.045451
Evaluate
e5−d5÷(d×9)
To find the roots of the expression,set the expression equal to 0
e5−d5÷(d×9)=0
Find the domain
More Steps

Evaluate
d×9=0
Use the commutative property to reorder the terms
9d=0
Rewrite the expression
d=0
e5−d5÷(d×9)=0,d=0
Calculate
e5−d5÷(d×9)=0
Use the commutative property to reorder the terms
e5−d5÷9d=0
Divide the terms
More Steps

Evaluate
d5÷9d
Rewrite the expression
9dd5
Use the product rule aman=an−m to simplify the expression
9d5−1
Reduce the fraction
9d4
e5−9d4=0
Subtract the terms
More Steps

Simplify
e5−9d4
Reduce fractions to a common denominator
9e5×9−9d4
Write all numerators above the common denominator
9e5×9−d4
Use the commutative property to reorder the terms
99e5−d4
99e5−d4=0
Simplify
9e5−d4=0
Rewrite the expression
−d4=−9e5
Change the signs on both sides of the equation
d4=9e5
Take the root of both sides of the equation and remember to use both positive and negative roots
d=±49e5
Simplify the expression
More Steps

Evaluate
49e5
Rewrite the expression
49×4e5
Simplify the root
e49e
d=±e49e
Separate the equation into 2 possible cases
d=e49ed=−e49e
Check if the solution is in the defined range
d=e49ed=−e49e,d=0
Find the intersection of the solution and the defined range
d=e49ed=−e49e
Solution
d1=−e49e,d2=e49e
Alternative Form
d1≈−6.045451,d2≈6.045451
Show Solution
