Question
Simplify the expression
7e7−b2
Evaluate
e6×7e−b×1×b
Multiply
More Steps

Multiply the terms
e6×7e
Multiply the terms with the same base by adding their exponents
e6+1×7
Add the numbers
e7×7
Multiply the numbers
7e7
7e7−b×1×b
Solution
More Steps

Multiply the terms
b×1×b
Rewrite the expression
b×b
Multiply the terms
b2
7e7−b2
Show Solution

Find the roots
b1=−e37e,b2=e37e
Alternative Form
b1≈−87.61525,b2≈87.61525
Evaluate
e6×7e−b×1×b
To find the roots of the expression,set the expression equal to 0
e6×7e−b×1×b=0
Multiply
More Steps

Multiply the terms
e6×7e
Multiply the terms with the same base by adding their exponents
e6+1×7
Add the numbers
e7×7
Multiply the numbers
7e7
7e7−b×1×b=0
Multiply the terms
More Steps

Multiply the terms
b×1×b
Rewrite the expression
b×b
Multiply the terms
b2
7e7−b2=0
Move the constant to the right-hand side and change its sign
−b2=0−7e7
Removing 0 doesn't change the value,so remove it from the expression
−b2=−7e7
Change the signs on both sides of the equation
b2=7e7
Take the root of both sides of the equation and remember to use both positive and negative roots
b=±7e7
Simplify the expression
More Steps

Evaluate
7e7
Rewrite the expression
7×e7
Simplify the root
e37e
b=±e37e
Separate the equation into 2 possible cases
b=e37eb=−e37e
Solution
b1=−e37e,b2=e37e
Alternative Form
b1≈−87.61525,b2≈87.61525
Show Solution
