Question
Simplify the expression
0
Evaluate
e×0÷(d×8)÷c4÷d2÷(d×1)÷dc
Any expression multiplied by 0 equals 0
0÷(d×8)÷c4÷d2÷(d×1)÷dc
Use the commutative property to reorder the terms
0÷8d÷c4÷d2÷(d×1)÷dc
Any expression multiplied by 1 remains the same
0÷8d÷c4÷d2÷d÷dc
Divide the terms
0÷c4÷d2÷d÷dc
Divide the terms
0÷d2÷d÷dc
Divide the terms
0÷d÷dc
Divide the terms
0÷dc
Solution
0
Show Solution

Find the excluded values
d=0,c=0
Evaluate
e×0÷(d×8)÷c4÷d2÷(d×1)÷(dc)
To find the excluded values,set the denominators equal to 0
d×8=0c4=0d2=0d×1=0dc=0
Solve the equations
More Steps

Evaluate
d×8=0
Use the commutative property to reorder the terms
8d=0
Rewrite the expression
d=0
d=0c4=0d2=0d×1=0dc=0
The only way a power can be 0 is when the base equals 0
d=0c=0d2=0d×1=0dc=0
The only way a power can be 0 is when the base equals 0
d=0c=0d=0d×1=0dc=0
Any expression multiplied by 1 remains the same
d=0c=0d=0d=0dc=0
Solve the equations
More Steps

Evaluate
dc=0
Separate the equation into 2 possible cases
d=0c=0
Find the union
c=0d=0
d=0c=0d=0d=0d=0c=0
Solution
d=0,c=0
Show Solution
