Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
f1=14−219,f2=14+219
Alternative Form
f1≈−0.798649,f2≈28.798649
Evaluate
f2−28f=23
Move the expression to the left side
f2−28f−23=0
Substitute a=1,b=−28 and c=−23 into the quadratic formula f=2a−b±b2−4ac
f=228±(−28)2−4(−23)
Simplify the expression
More Steps

Evaluate
(−28)2−4(−23)
Multiply the numbers
More Steps

Evaluate
4(−23)
Multiplying or dividing an odd number of negative terms equals a negative
−4×23
Multiply the numbers
−92
(−28)2−(−92)
Rewrite the expression
282−(−92)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
282+92
Evaluate the power
784+92
Add the numbers
876
f=228±876
Simplify the radical expression
More Steps

Evaluate
876
Write the expression as a product where the root of one of the factors can be evaluated
4×219
Write the number in exponential form with the base of 2
22×219
The root of a product is equal to the product of the roots of each factor
22×219
Reduce the index of the radical and exponent with 2
2219
f=228±2219
Separate the equation into 2 possible cases
f=228+2219f=228−2219
Simplify the expression
More Steps

Evaluate
f=228+2219
Divide the terms
More Steps

Evaluate
228+2219
Rewrite the expression
22(14+219)
Reduce the fraction
14+219
f=14+219
f=14+219f=228−2219
Simplify the expression
More Steps

Evaluate
f=228−2219
Divide the terms
More Steps

Evaluate
228−2219
Rewrite the expression
22(14−219)
Reduce the fraction
14−219
f=14−219
f=14+219f=14−219
Solution
f1=14−219,f2=14+219
Alternative Form
f1≈−0.798649,f2≈28.798649
Show Solution
