Question
Simplify the expression
310ef3−15
Evaluate
f2×310ef−15
Solution
More Steps

Evaluate
f2×310ef
Multiply the terms with the same base by adding their exponents
f2+1×310e
Add the numbers
f3×310e
Use the commutative property to reorder the terms
310f3e
Multiply the numbers
310ef3
310ef3−15
Show Solution

Factor the expression
5(62ef3−3)
Evaluate
f2×310ef−15
Multiply
More Steps

Evaluate
f2×310ef
Multiply the terms with the same base by adding their exponents
f2+1×310e
Add the numbers
f3×310e
Use the commutative property to reorder the terms
310f3e
Multiply the numbers
310ef3
310ef3−15
Solution
5(62ef3−3)
Show Solution

Find the roots
f=62e311532e2
Alternative Form
f≈0.261103
Evaluate
f2×310ef−15
To find the roots of the expression,set the expression equal to 0
f2×310ef−15=0
Multiply
More Steps

Multiply the terms
f2×310ef
Multiply the terms with the same base by adding their exponents
f2+1×310e
Add the numbers
f3×310e
Use the commutative property to reorder the terms
310f3e
Multiply the numbers
310ef3
310ef3−15=0
Move the constant to the right-hand side and change its sign
310ef3=0+15
Removing 0 doesn't change the value,so remove it from the expression
310ef3=15
Divide both sides
310e310ef3=310e15
Divide the numbers
f3=310e15
Cancel out the common factor 5
f3=62e3
Take the 3-th root on both sides of the equation
3f3=362e3
Calculate
f=362e3
Solution
More Steps

Evaluate
362e3
To take a root of a fraction,take the root of the numerator and denominator separately
362e33
Multiply by the Conjugate
362e×3622e233×3622e2
Multiply the numbers
More Steps

Evaluate
33×3622e2
The product of roots with the same index is equal to the root of the product
33×622e2
Calculate the product
311532e2
362e×3622e2311532e2
Multiply the numbers
More Steps

Evaluate
362e×3622e2
The product of roots with the same index is equal to the root of the product
362e×622e2
Calculate the product
3623e3
Calculate
62e
62e311532e2
f=62e311532e2
Alternative Form
f≈0.261103
Show Solution
