Question
Solve the differential equation
f=2a2+C,C∈R
Evaluate
f′=a
Rewrite the expression
dadf=a
Transform the expression
df=ada
Integrate the left-hand side of the equation with respect to f and the right-hand side of the equation with respect to a
∫1df=∫ada
Calculate
More Steps

Evaluate
∫1df
Use the property of integral ∫kdx=kx
f
Add the constant of integral C1
f+C1,C1∈R
f+C1=∫ada,C1∈R
Calculate
More Steps

Evaluate
∫ada
Use the property of integral ∫xndx=n+1xn+1
1+1a1+1
Add the numbers
1+1a2
Add the numbers
2a2
Add the constant of integral C2
2a2+C2,C2∈R
f+C1=2a2+C2,C1∈R,C2∈R
Solution
f=2a2+C,C∈R
Show Solution
