Question
Solve the differential equation
f=2l2+C,C∈R
Evaluate
f′=l
Rewrite the expression
dldf=l
Transform the expression
df=ldl
Integrate the left-hand side of the equation with respect to f and the right-hand side of the equation with respect to l
∫1df=∫ldl
Calculate
More Steps

Evaluate
∫1df
Use the property of integral ∫kdx=kx
f
Add the constant of integral C1
f+C1,C1∈R
f+C1=∫ldl,C1∈R
Calculate
More Steps

Evaluate
∫ldl
Use the property of integral ∫xndx=n+1xn+1
1+1l1+1
Add the numbers
1+1l2
Add the numbers
2l2
Add the constant of integral C2
2l2+C2,C2∈R
f+C1=2l2+C2,C1∈R,C2∈R
Solution
f=2l2+C,C∈R
Show Solution
