Question
Solve the equation
Solve for μ
Solve for f
Solve for r
μ=2ff+f2+4frμ=2ff−f2+4fr
Evaluate
f(μ2−μ×1)=r
Any expression multiplied by 1 remains the same
f(μ2−μ)=r
Divide both sides
ff(μ2−μ)=fr
Divide the numbers
μ2−μ=fr
Move the expression to the left side
μ2−μ−fr=0
Multiply both sides of the equation by LCD
(μ2−μ−fr)f=0×f
Simplify the equation
More Steps

Evaluate
(μ2−μ−fr)f
Apply the distributive property
μ2f−μf−fr×f
Simplify
μ2f−μf−r
Multiply the terms
fμ2−μf−r
Multiply the terms
fμ2−fμ−r
fμ2−fμ−r=0×f
Any expression multiplied by 0 equals 0
fμ2−fμ−r=0
Substitute a=f,b=−f and c=−r into the quadratic formula μ=2a−b±b2−4ac
μ=2ff±(−f)2−4f(−r)
Simplify the expression
More Steps

Evaluate
(−f)2−4f(−r)
Rewrite the expression
(−f)2−(−4fr)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(−f)2+4fr
Evaluate the power
f2+4fr
μ=2ff±f2+4fr
Solution
μ=2ff+f2+4frμ=2ff−f2+4fr
Show Solution
