Question
Function
Evaluate the derivative
Find the domain
Find the x-intercept/zero
Load more

f′(x)=7cos(7x)−49xsin(7x)
Evaluate
f(x)=7xcos(7x)
Take the derivative of both sides
f′(x)=dxd(7xcos(7x))
Use differentiation rule dxd(f(x)×g(x))=dxd(f(x))×g(x)+f(x)×dxd(g(x))
f′(x)=dxd(7)×xcos(7x)+7×dxd(x)×cos(7x)+7x×dxd(cos(7x))
Use dxd(c)=0 to find derivative
f′(x)=0×xcos(7x)+7×dxd(x)×cos(7x)+7x×dxd(cos(7x))
Calculate
f′(x)=0+7×dxd(x)×cos(7x)+7x×dxd(cos(7x))
Use dxdxn=nxn−1 to find derivative
f′(x)=0+7×1×cos(7x)+7x×dxd(cos(7x))
Calculate
f′(x)=0+7cos(7x)+7x×dxd(cos(7x))
Calculate
More Steps

Calculate
dxd(cos(7x))
Use the chain rule dxd(f(g))=dgd(f(g))×dxd(g) where the g=7x, to find the derivative
dgd(cos(g))×dxd(7x)
Use dxd(cosx)=−sinx to find derivative
−sin(g)×dxd(7x)
Calculate
−sin(g)×7
Substitute back
−sin(7x)×7
Calculate
−7sin(7x)
f′(x)=0+7cos(7x)+7x(−7sin(7x))
Calculate
f′(x)=0+7cos(7x)−49xsin(7x)
Solution
f′(x)=7cos(7x)−49xsin(7x)
Show Solution
