Question
Function
f′(x)=a(x2−3x)23x2−16x+24
Evaluate
f(x)=(x−3)xa(x−2)(x−4)
Simplify
f(x)=xa(x−3)(x−2)(x−4)
Evaluate
f(x)=ax(x−3)(x−2)(x−4)
Take the derivative of both sides
f′(x)=dxd(ax(x−3)(x−2)(x−4))
Calculate
f′(x)=dxd(ax2−3axx2−6x+8)
Use differentiation rule dxd(g(x)f(x))=(g(x))2dxd(f(x))×g(x)−f(x)×dxd(g(x))
f′(x)=(ax2−3ax)2dxd(x2−6x+8)×(ax2−3ax)−(x2−6x+8)×dxd(ax2−3ax)
Calculate
More Steps

Evaluate
dxd(x2−6x+8)
Use differentiation rule dxd(f(x)±g(x))=dxd(f(x))±dxd(g(x))
dxd(x2)−dxd(6x)+dxd(8)
Use dxdxn=nxn−1 to find derivative
2x−dxd(6x)+dxd(8)
Calculate
2x−6+dxd(8)
Use dxd(c)=0 to find derivative
2x−6+0
Removing 0 doesn't change the value,so remove it from the expression
2x−6
f′(x)=(ax2−3ax)2(2x−6)(ax2−3ax)−(x2−6x+8)×dxd(ax2−3ax)
Calculate
More Steps

Evaluate
dxd(ax2−3ax)
Use differentiation rule dxd(f(x)±g(x))=dxd(f(x))±dxd(g(x))
dxd(ax2)+dxd(−3ax)
Calculate
2ax+dxd(−3ax)
Calculate
2ax−3a
f′(x)=(ax2−3ax)2(2x−6)(ax2−3ax)−(x2−6x+8)(2ax−3a)
Subtract the terms
More Steps

Evaluate
(2x−6)(ax2−3ax)−(x2−6x+8)(2ax−3a)
Rewrite the expression
(2x−6)(ax2−3ax)+(−x2+6x−8)(2ax−3a)
Expand the expression
2ax3−12ax2+18ax+(−x2+6x−8)(2ax−3a)
Expand the expression
2ax3−12ax2+18ax−2ax3+15ax2−34ax+24a
The sum of two opposites equals 0
0−12ax2+18ax+15ax2−34ax+24a
Remove 0
−12ax2+18ax+15ax2−34ax+24a
Add the terms
3ax2+18ax−34ax+24a
Subtract the terms
3ax2−16ax+24a
f′(x)=(ax2−3ax)23ax2−16ax+24a
Solution
More Steps

Evaluate
(ax2−3ax)23ax2−16ax+24a
Factor the expression
(ax2−3ax)2a(3x2−16x+24)
Factor the expression
a2(x2−3x)2a(3x2−16x+24)
Reduce the fraction
a(x2−3x)23x2−16x+24
f′(x)=a(x2−3x)23x2−16x+24
Show Solution
