Question Function f′(x)=−x2ak Evaluate f(x)=xk×aSimplify f(x)=xkaTake the derivative of both sides f′(x)=dxd(xka)Use differentiation rules f′(x)=ka×dxd(x1)Rewrite the expression in exponential form f′(x)=ka×dxd(x−1)Use dxdxn=nxn−1 to find derivative f′(x)=ka(−x−2)Express with a positive exponent using a−n=an1 f′(x)=ka(−x21)Solution f′(x)=−x2ak Show Solution