Question
Function
f′(x)=blog10(a)
Evaluate
f(x)=log10(a)×xb
Simplify
f(x)=xblog10(a)
Evaluate
f(x)=bxlog10(a)
Take the derivative of both sides
f′(x)=dxd(bxlog10(a))
Use differentiation rule dxd(f(x)×g(x))=dxd(f(x))×g(x)+f(x)×dxd(g(x))
f′(x)=dxd(bx)×log10(a)+bx×dxd(log10(a))
Calculate
More Steps

Calculate
dxd(bx)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
b×dxd(x)
Use dxdxn=nxn−1 to find derivative
b×1
Any expression multiplied by 1 remains the same
b
f′(x)=blog10(a)+bx×dxd(log10(a))
Use dxd(c)=0 to find derivative
f′(x)=blog10(a)+bx×0
Calculate
f′(x)=blog10(a)+0
Solution
f′(x)=blog10(a)
Show Solution
