Question Function Evaluate the derivative Find the domain Find the y-intercept Load more f′(x)=−cos(x)−xsin(x) Evaluate f(x)=xcos(x)−2sin(x)Take the derivative of both sides f′(x)=dxd(xcos(x)−2sin(x))Use differentiation rule dxd(f(x)±g(x))=dxd(f(x))±dxd(g(x)) f′(x)=dxd(xcos(x))−dxd(2sin(x))Calculate More Steps Calculate dxd(xcos(x))Use differentiation rule dxd(f(x)×g(x))=dxd(f(x))×g(x)+f(x)×dxd(g(x)) dxd(x)×cos(x)+x×dxd(cos(x))Use dxdxn=nxn−1 to find derivative 1×cos(x)+x×dxd(cos(x))Calculate cos(x)+x×dxd(cos(x))Use dxd(cosx)=−sinx to find derivative cos(x)+x(−sin(x))Calculate cos(x)−xsin(x) f′(x)=cos(x)−xsin(x)−dxd(2sin(x))Calculate More Steps Calculate dxd(2sin(x))Simplify 2×dxd(sin(x))Use dxd(sinx)=cosx to find derivative 2cos(x) f′(x)=cos(x)−xsin(x)−2cos(x)Solution f′(x)=−cos(x)−xsin(x) Show Solution Graph