Question
Function
f′(x)=z
Evaluate
f(x)=xz−3
Evaluate
f(x)=zx−3
Take the derivative of both sides
f′(x)=dxd(zx−3)
Use differentiation rule dxd(f(x)±g(x))=dxd(f(x))±dxd(g(x))
f′(x)=dxd(zx)−dxd(3)
Calculate
More Steps

Calculate
dxd(zx)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
z×dxd(x)
Use dxdxn=nxn−1 to find derivative
z×1
Any expression multiplied by 1 remains the same
z
f′(x)=z−dxd(3)
Use dxd(c)=0 to find derivative
f′(x)=z−0
Solution
f′(x)=z
Show Solution
