Question
Simplify the expression
ff2−16e
Evaluate
f−(16×fe)
Multiply the terms
f−f16e
Reduce fractions to a common denominator
ff×f−f16e
Write all numerators above the common denominator
ff×f−16e
Solution
ff2−16e
Show Solution

Find the excluded values
f=0
Evaluate
f−(16×fe)
Solution
f=0
Show Solution

Find the roots
f1=−4e,f2=4e
Alternative Form
f1≈−6.594885,f2≈6.594885
Evaluate
f−(16×fe)
To find the roots of the expression,set the expression equal to 0
f−(16×fe)=0
Find the domain
f−(16×fe)=0,f=0
Calculate
f−(16×fe)=0
Multiply the terms
f−f16e=0
Subtract the terms
More Steps

Simplify
f−f16e
Reduce fractions to a common denominator
ff×f−f16e
Write all numerators above the common denominator
ff×f−16e
Multiply the terms
ff2−16e
ff2−16e=0
Cross multiply
f2−16e=f×0
Simplify the equation
f2−16e=0
Move the constant to the right side
f2=16e
Take the root of both sides of the equation and remember to use both positive and negative roots
f=±16e
Simplify the expression
More Steps

Evaluate
16e
Rewrite the expression
16×e
Simplify the root
4e
f=±4e
Separate the equation into 2 possible cases
f=4ef=−4e
Check if the solution is in the defined range
f=4ef=−4e,f=0
Find the intersection of the solution and the defined range
f=4ef=−4e
Solution
f1=−4e,f2=4e
Alternative Form
f1≈−6.594885,f2≈6.594885
Show Solution
