Question
Simplify the expression
679bd6af
Evaluate
f×8÷(b×7)÷97÷d4÷(d×8)÷da
Use the commutative property to reorder the terms
f×8÷7b÷97÷d4÷(d×8)÷da
Use the commutative property to reorder the terms
f×8÷7b÷97÷d4÷8d÷da
Use the commutative property to reorder the terms
8f÷7b÷97÷d4÷8d÷da
Rewrite the expression
7b8f÷97÷d4÷8d÷da
Divide the terms
More Steps

Evaluate
7b8f÷97
Multiply by the reciprocal
7b8f×971
Multiply the terms
7b×978f
Multiply the terms
679b8f
679b8f÷d4÷8d÷da
Divide the terms
More Steps

Evaluate
679b8f÷d4
Multiply by the reciprocal
679b8f×d41
Multiply the terms
679bd48f
679bd48f÷8d÷da
Divide the terms
More Steps

Evaluate
679bd48f÷8d
Multiply by the reciprocal
679bd48f×8d1
Cancel out the common factor 8
679bd4f×d1
Multiply the terms
679bd4×df
Multiply the terms
More Steps

Evaluate
d4×d
Use the product rule an×am=an+m to simplify the expression
d4+1
Add the numbers
d5
679bd5f
679bd5f÷da
Multiply by the reciprocal
679bd5f×da1
Multiply the terms
679bd5×daf
Solution
More Steps

Evaluate
d5×d
Use the product rule an×am=an+m to simplify the expression
d5+1
Add the numbers
d6
679bd6af
Show Solution

Find the excluded values
b=0,d=0,a=0
Evaluate
f×8÷(b×7)÷97÷d4÷(d×8)÷(da)
To find the excluded values,set the denominators equal to 0
b×7=0d4=0d×8=0da=0
Solve the equations
More Steps

Evaluate
b×7=0
Use the commutative property to reorder the terms
7b=0
Rewrite the expression
b=0
b=0d4=0d×8=0da=0
The only way a power can be 0 is when the base equals 0
b=0d=0d×8=0da=0
Solve the equations
More Steps

Evaluate
d×8=0
Use the commutative property to reorder the terms
8d=0
Rewrite the expression
d=0
b=0d=0d=0da=0
Solve the equations
More Steps

Evaluate
da=0
Separate the equation into 2 possible cases
d=0a=0
Find the union
a=0d=0
b=0d=0d=0d=0a=0
Solution
b=0,d=0,a=0
Show Solution
