Question
g4×376−1×g
Simplify the expression
376g4−g
Evaluate
g4×376−1×g
Use the commutative property to reorder the terms
376g4−1×g
Solution
376g4−g
Show Solution

Factor the expression
g(376g3−1)
Evaluate
g4×376−1×g
Use the commutative property to reorder the terms
376g4−1×g
Any expression multiplied by 1 remains the same
376g4−g
Rewrite the expression
g×376g3−g
Solution
g(376g3−1)
Show Solution

Find the roots
g1=0,g2=9432209
Alternative Form
g1=0,g2≈0.138549
Evaluate
g4×376−1×g
To find the roots of the expression,set the expression equal to 0
g4×376−1×g=0
Use the commutative property to reorder the terms
376g4−1×g=0
Any expression multiplied by 1 remains the same
376g4−g=0
Factor the expression
g(376g3−1)=0
Separate the equation into 2 possible cases
g=0376g3−1=0
Solve the equation
More Steps

Evaluate
376g3−1=0
Move the constant to the right-hand side and change its sign
376g3=0+1
Removing 0 doesn't change the value,so remove it from the expression
376g3=1
Divide both sides
376376g3=3761
Divide the numbers
g3=3761
Take the 3-th root on both sides of the equation
3g3=33761
Calculate
g=33761
Simplify the root
More Steps

Evaluate
33761
To take a root of a fraction,take the root of the numerator and denominator separately
337631
Simplify the radical expression
33761
Simplify the radical expression
23471
Multiply by the Conjugate
2347×34723472
Simplify
2347×347232209
Multiply the numbers
9432209
g=9432209
g=0g=9432209
Solution
g1=0,g2=9432209
Alternative Form
g1=0,g2≈0.138549
Show Solution
