Question
Solve the differential equation
g=2m2+C,C∈R
Evaluate
g′=m
Rewrite the expression
dmdg=m
Transform the expression
dg=mdm
Integrate the left-hand side of the equation with respect to g and the right-hand side of the equation with respect to m
∫1dg=∫mdm
Calculate
More Steps

Evaluate
∫1dg
Use the property of integral ∫kdx=kx
g
Add the constant of integral C1
g+C1,C1∈R
g+C1=∫mdm,C1∈R
Calculate
More Steps

Evaluate
∫mdm
Use the property of integral ∫xndx=n+1xn+1
1+1m1+1
Add the numbers
1+1m2
Add the numbers
2m2
Add the constant of integral C2
2m2+C2,C2∈R
g+C1=2m2+C2,C1∈R,C2∈R
Solution
g=2m2+C,C∈R
Show Solution
