Question
Solve the differential equation
g=2o2+C,C∈R
Evaluate
g′=o
Rewrite the expression
dodg=o
Transform the expression
dg=odo
Integrate the left-hand side of the equation with respect to g and the right-hand side of the equation with respect to o
∫1dg=∫odo
Calculate
More Steps

Evaluate
∫1dg
Use the property of integral ∫kdx=kx
g
Add the constant of integral C1
g+C1,C1∈R
g+C1=∫odo,C1∈R
Calculate
More Steps

Evaluate
∫odo
Use the property of integral ∫xndx=n+1xn+1
1+1o1+1
Add the numbers
1+1o2
Add the numbers
2o2
Add the constant of integral C2
2o2+C2,C2∈R
g+C1=2o2+C2,C1∈R,C2∈R
Solution
g=2o2+C,C∈R
Show Solution
