Question
Solve the differential equation
i=2n2+C,C∈R
Evaluate
i′=n
Rewrite the expression
dndi=n
Transform the expression
di=ndn
Integrate the left-hand side of the equation with respect to i and the right-hand side of the equation with respect to n
∫1di=∫ndn
Calculate
More Steps

Evaluate
∫1di
Use the property of integral ∫kdx=kx
i
Add the constant of integral C1
i+C1,C1∈R
i+C1=∫ndn,C1∈R
Calculate
More Steps

Evaluate
∫ndn
Use the property of integral ∫xndx=n+1xn+1
1+1n1+1
Add the numbers
1+1n2
Add the numbers
2n2
Add the constant of integral C2
2n2+C2,C2∈R
i+C1=2n2+C2,C1∈R,C2∈R
Solution
i=2n2+C,C∈R
Show Solution
