Question
Evaluate the integral
sin2(x)×b2+C,C∈R
Evaluate
∫0π×xdx×a2cos2(x)+b2sin2(x)
Calculate
∫0×xdx×a2cos2(x)+b2sin2(x)
Any expression multiplied by 0 equals 0
∫0dx×a2cos2(x)+b2sin2(x)
Use the property of integral ∫kdx=kx
0×a2cos2(x)+b2sin2(x)
Any expression multiplied by 0 equals 0
0+b2sin2(x)
Multiply the terms
0+(bsin(x))2
Removing 0 doesn't change the value,so remove it from the expression
(bsin(x))2
Rewrite the expression
sin2(x)×b2
Solution
sin2(x)×b2+C,C∈R
Show Solution
