Question
Simplify the expression
k2−104k4
Evaluate
k2−13k4×8
Solution
k2−104k4
Show Solution

Factor the expression
k2(1−104k2)
Evaluate
k2−13k4×8
Multiply the terms
k2−104k4
Rewrite the expression
k2−k2×104k2
Solution
k2(1−104k2)
Show Solution

Find the roots
k1=−5226,k2=0,k3=5226
Alternative Form
k1≈−0.098058,k2=0,k3≈0.098058
Evaluate
k2−13k4×8
To find the roots of the expression,set the expression equal to 0
k2−13k4×8=0
Multiply the terms
k2−104k4=0
Factor the expression
k2(1−104k2)=0
Separate the equation into 2 possible cases
k2=01−104k2=0
The only way a power can be 0 is when the base equals 0
k=01−104k2=0
Solve the equation
More Steps

Evaluate
1−104k2=0
Move the constant to the right-hand side and change its sign
−104k2=0−1
Removing 0 doesn't change the value,so remove it from the expression
−104k2=−1
Change the signs on both sides of the equation
104k2=1
Divide both sides
104104k2=1041
Divide the numbers
k2=1041
Take the root of both sides of the equation and remember to use both positive and negative roots
k=±1041
Simplify the expression
More Steps

Evaluate
1041
To take a root of a fraction,take the root of the numerator and denominator separately
1041
Simplify the radical expression
1041
Simplify the radical expression
2261
Multiply by the Conjugate
226×2626
Multiply the numbers
5226
k=±5226
Separate the equation into 2 possible cases
k=5226k=−5226
k=0k=5226k=−5226
Solution
k1=−5226,k2=0,k3=5226
Alternative Form
k1≈−0.098058,k2=0,k3≈0.098058
Show Solution
