Question
Simplify the expression
k4−4k3+6k2−3k
Evaluate
k(k−1)3−k(k−1)(k−2)
Expand the expression
More Steps

Calculate
k(k−1)3
Simplify
k(k3−3k2+3k−1)
Apply the distributive property
k×k3−k×3k2+k×3k−k×1
Multiply the terms
More Steps

Evaluate
k×k3
Use the product rule an×am=an+m to simplify the expression
k1+3
Add the numbers
k4
k4−k×3k2+k×3k−k×1
Multiply the terms
More Steps

Evaluate
k×3k2
Use the commutative property to reorder the terms
3k×k2
Multiply the terms
3k3
k4−3k3+k×3k−k×1
Multiply the terms
More Steps

Evaluate
k×3k
Use the commutative property to reorder the terms
3k×k
Multiply the terms
3k2
k4−3k3+3k2−k×1
Any expression multiplied by 1 remains the same
k4−3k3+3k2−k
k4−3k3+3k2−k−k(k−1)(k−2)
Expand the expression
More Steps

Calculate
−k(k−1)(k−2)
Simplify
More Steps

Evaluate
−k(k−1)
Apply the distributive property
−k×k−(−k×1)
Multiply the terms
−k2−(−k×1)
Any expression multiplied by 1 remains the same
−k2−(−k)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−k2+k
(−k2+k)(k−2)
Apply the distributive property
−k2×k−(−k2×2)+k×k−k×2
Multiply the terms
More Steps

Evaluate
k2×k
Use the product rule an×am=an+m to simplify the expression
k2+1
Add the numbers
k3
−k3−(−k2×2)+k×k−k×2
Use the commutative property to reorder the terms
−k3−(−2k2)+k×k−k×2
Multiply the terms
−k3−(−2k2)+k2−k×2
Use the commutative property to reorder the terms
−k3−(−2k2)+k2−2k
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−k3+2k2+k2−2k
Add the terms
More Steps

Evaluate
2k2+k2
Collect like terms by calculating the sum or difference of their coefficients
(2+1)k2
Add the numbers
3k2
−k3+3k2−2k
k4−3k3+3k2−k−k3+3k2−2k
Subtract the terms
More Steps

Evaluate
−3k3−k3
Collect like terms by calculating the sum or difference of their coefficients
(−3−1)k3
Subtract the numbers
−4k3
k4−4k3+3k2−k+3k2−2k
Add the terms
More Steps

Evaluate
3k2+3k2
Collect like terms by calculating the sum or difference of their coefficients
(3+3)k2
Add the numbers
6k2
k4−4k3+6k2−k−2k
Solution
More Steps

Evaluate
−k−2k
Collect like terms by calculating the sum or difference of their coefficients
(−1−2)k
Subtract the numbers
−3k
k4−4k3+6k2−3k
Show Solution

Factor the expression
k(k−1)(k2−3k+3)
Evaluate
k(k−1)3−k(k−1)(k−2)
Rewrite the expression
k(k−1)(k−1)2+k(k−1)(−k+2)
Factor out k(k−1) from the expression
k(k−1)((k−1)2−k+2)
Solution
k(k−1)(k2−3k+3)
Show Solution

Find the roots
k1=23−23i,k2=23+23i,k3=0,k4=1
Alternative Form
k1≈1.5−0.866025i,k2≈1.5+0.866025i,k3=0,k4=1
Evaluate
k(k−1)3−k(k−1)(k−2)
To find the roots of the expression,set the expression equal to 0
k(k−1)3−k(k−1)(k−2)=0
Calculate
More Steps

Evaluate
k(k−1)3−k(k−1)(k−2)
Expand the expression
More Steps

Calculate
k(k−1)3
Simplify
k(k3−3k2+3k−1)
Apply the distributive property
k×k3−k×3k2+k×3k−k×1
Multiply the terms
k4−k×3k2+k×3k−k×1
Multiply the terms
k4−3k3+k×3k−k×1
Multiply the terms
k4−3k3+3k2−k×1
Any expression multiplied by 1 remains the same
k4−3k3+3k2−k
k4−3k3+3k2−k−k(k−1)(k−2)
Expand the expression
More Steps

Calculate
−k(k−1)(k−2)
Simplify
(−k2+k)(k−2)
Apply the distributive property
−k2×k−(−k2×2)+k×k−k×2
Multiply the terms
−k3−(−k2×2)+k×k−k×2
Use the commutative property to reorder the terms
−k3−(−2k2)+k×k−k×2
Multiply the terms
−k3−(−2k2)+k2−k×2
Use the commutative property to reorder the terms
−k3−(−2k2)+k2−2k
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−k3+2k2+k2−2k
Add the terms
−k3+3k2−2k
k4−3k3+3k2−k−k3+3k2−2k
Subtract the terms
More Steps

Evaluate
−3k3−k3
Collect like terms by calculating the sum or difference of their coefficients
(−3−1)k3
Subtract the numbers
−4k3
k4−4k3+3k2−k+3k2−2k
Add the terms
More Steps

Evaluate
3k2+3k2
Collect like terms by calculating the sum or difference of their coefficients
(3+3)k2
Add the numbers
6k2
k4−4k3+6k2−k−2k
Subtract the terms
More Steps

Evaluate
−k−2k
Collect like terms by calculating the sum or difference of their coefficients
(−1−2)k
Subtract the numbers
−3k
k4−4k3+6k2−3k
k4−4k3+6k2−3k=0
Factor the expression
k(k−1)(k2−3k+3)=0
Separate the equation into 3 possible cases
k=0k−1=0k2−3k+3=0
Solve the equation
More Steps

Evaluate
k−1=0
Move the constant to the right-hand side and change its sign
k=0+1
Removing 0 doesn't change the value,so remove it from the expression
k=1
k=0k=1k2−3k+3=0
Solve the equation
More Steps

Evaluate
k2−3k+3=0
Substitute a=1,b=−3 and c=3 into the quadratic formula k=2a−b±b2−4ac
k=23±(−3)2−4×3
Simplify the expression
More Steps

Evaluate
(−3)2−4×3
Multiply the numbers
(−3)2−12
Rewrite the expression
32−12
Evaluate the power
9−12
Subtract the numbers
−3
k=23±−3
Simplify the radical expression
More Steps

Evaluate
−3
Evaluate the power
3×−1
Evaluate the power
3×i
k=23±3×i
Separate the equation into 2 possible cases
k=23+3×ik=23−3×i
Simplify the expression
k=23+23ik=23−3×i
Simplify the expression
k=23+23ik=23−23i
k=0k=1k=23+23ik=23−23i
Solution
k1=23−23i,k2=23+23i,k3=0,k4=1
Alternative Form
k1≈1.5−0.866025i,k2≈1.5+0.866025i,k3=0,k4=1
Show Solution
